• May 2, 2025

Pandas Function

Explore DataFrame

To get the DataFrame Columnsdf.columns
To get the rows and column count of DataFramedf.shape
To get the DataFrame Column and Datatypedf.dtypes
To get the DataFrame first 5 rowsdf.head()

Selection

To get the DataFrame first 10 rows using iloc:
[ : , :] before comma rows and after comma columns
df.iloc[:10]
To get the DataFrame first 5 Columns using iloc: df.iloc[ : , :5]
To get columns by name:
loc – label based
df.loc[:,[“column1″,”column2″,”column3”]]
To get random 10% rowsdf.sample(frac = 0.1)
To get 50 rowsdf.sample(n = 50)

DataFrame Column Manipulation

Rename column by position: here 3 rd column renameddf.rename( )
df.rename(columns={‘col1′:’column1’, ‘col2′:’column2’ }, inplace = True)
rename columns having underscore ‘_’ in their names with ‘dot’df.columns = df.columns.str.replace(‘_’ , ‘.’)
rename column by adding prefix and suffixdf = df.add_prefix(‘de_’)
df = df.add_prefix(‘_lv’)
Selecting a column as indexdf.set_index( )

DataFrame Data Manipulation

Removing rows or columnsdf.drop()
sortdf.sort_values( )
groupingdf.groupby( )
Filterdf.query( ) or df.where( )
Find missing Valuesdf.isnull( )
Drop missing Valuesdf.dropna( )
Drop duplicatesdf.drop_duplicates( )
Rankdf.rank()
Selecting column by typesdf.select_dtypes( )
Concatenate 2 dataframepd.concat
Top Level Function
concat 2 dataframepd.concat()
Merging (Joining) based on common valuespd.merge( )